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We propose an approach to the problem of the first-passage time. Our method is applicable not only to the
Wiener process but also to the non-Gaussian Lévy flights or to more complicated stochastic processes whose
distributions are stable. To show the usefulness of the method, we particularly focus on the first-passage time
problems in the truncated Lévy flights �the so-called KoBoL processes from Koponen, Boyarchenko, and
Levendorskii�, in which the arbitrarily large tail of the Lévy distribution is cut off. We find that the asymptotic
scaling law of the first-passage time t distribution changes from t−��+1�/�-law �non-Gaussian Lévy regime� to
t−3/2-law �Gaussian regime� at the crossover point. This result means that an ultraslow convergence from the
non-Gaussian Lévy regime to the Gaussian regime is observed not only in the distribution of the real time step
for the truncated Lévy flight but also in the first-passage time distribution of the flight. The nature of the
crossover in the scaling laws and the scaling relation on the crossover point with respect to the effective cutoff
length of the Lévy distribution are discussed.
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I. INTRODUCTION

The first-passage process or the first-passage time �FPT�
problem deals with the event where a diffusing particle or a
random-walker first reaches a specific site at a specific time
�1�. These FPT problems have been studied in various re-
search fields, such as statistical physics, chemistry �2�,
and biological neuroscience �3,4�. In finance, several
authors �5–12� have analyzed tick-by-tick data of the US
dollar/Japanese yen �USD/JPY� exchange rate and studied
the FPT distribution for which the FPT is defined by the time
that the rate first moves out from a given range.

Among these studies, the USD/JPY exchange rates of the
Sony Bank �13� are reproduced from the market rates by
using some rate windows with a width of 0.1 yen �11,12�.
That is, if the USD/JPY market rate changes by more than
0.1 yen, the Sony Bank rate for USD/JPY is updated to the
market rate; otherwise it remains constant. In this sense, it is
possible for us to say that the procedure for determining the
USD/JPY exchange rate of the Sony Bank is essentially the
first passage process. Despite many demands from various
research fields and business in financial markets, one could
obtain explicit analytical expressions or solutions of the FPT
distribution only in very few cases. In addition, except for a
few cases �14�, most of the analytical expressions are of the
ordinary Wiener process �ordinary Brownian motion�.

Based on this fact, here we propose an approach to the
problem of the FPT or first-passage processes. Our method is
applicable not only to the Wiener process but also to the
anomalous diffusion of the non-Gaussian Lévy flights or
more complicated stochastic processes. To show the useful-
ness of our approach, we particularly focus on the FPT prob-
lems in the truncated Lévy flights �15–17�, in which the ar-

bitrarily large tail of the Lévy distribution is cut off. Using
the method, we find that the asymptotic scaling law of the
FPT t distribution changes from a t−��+1�/�-law �non-
Gaussian Lévy regime� to a t−3/2-law �Gaussian regime� at
some crossover point. This fact means that the crossover
between non-Gaussian Lévy and Gaussian regimes is ob-
served not only in the distribution of the real-time step of the
truncated Lévy flight, which was reported by Mantegna and
Stanley �15�, but also in the FPT distribution of the flight.
Moreover, we give a scaling relation on the crossover point
with respect to the effective cutoff length of the Lévy distri-
bution. The scaling relation enables us to predict the cross-
over point of the FPT distribution for a given truncated Lévy
flight.

This paper is organized as follows. In the next section, we
explain general formalism of our method and apply it to the
FPT problem for the Wiener process, for which the solution
of the FPT distribution is well-known, in order to check the
validity of our method. In Sec. III, we show that our method
is widely useful for a class of stable stochastic processes. We
derive the FPT distribution for Lévy flight that includes
Gaussian and Lorentzian stochastic processes as its special
cases. For each stable stochastic process, we discuss the scal-
ing law of the FPT distribution in the asymptotic regime. The
analytical results are confirmed by computer simulations. In
Sec. IV, we apply our method to the FPT problem of the
truncated Lévy flight and discuss the crossover in the scaling
laws of the FPT distribution between non-Gaussian Lévy and
Gaussian regimes. The last section is a summary.

II. GENERAL FORMALISM

The problem we deal with in this paper is defined as fol-
lows. Let us consider the stochastic process Xk :k
=0,1 , . . . ,T. For this time series, the FPT t is defined by t
=min�k�k0 ;Xk= ±��. Then, our problem is to obtain the dis-
tribution of t, namely, the first-passage time distribution P�t�.
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In other words, we evaluate the distribution of t, that is P�t�,
which is defined as the survival probability that the time
series Xk, starting from k=k0, keeps staying within the range
�Xk0

−� ,Xk0
+�� up to the time step k0+ t. The problem we are

dealing with is motivated by the real mechanism of the Sony
Bank foreign exchange rate �11,12�. The Sony Bank rate is
the foreign exchange rate that the Sony Bank offers with
reference to the market rate. Basically, trades can be made on
the web �13� while the market is open. The Sony Bank rate
depends on the market rate but is independent of the custom-
ers’ orders. If the USD/JPY market rate changes by �
= ±0.1 yen or more, the Sony Bank rate for USD/JPY is
updated to the market rate. For instance, for the stochastic
process of the real market �what we call tick-by-tick data�
X0 ,X1 ,X2 , . . . ,XT with �X1��� and �X2���, the Sony Bank
rate stays flat from the time k=0 to k=1, as the market rate is
in the range of �= ±0.1 yen based on the market rate at k
=0. When the market rate exceeds the range of �=0.1 yen at
k=2, the Sony Bank rate is updated to the market rate. Ob-
viously, the time interval t=2−0=2 here corresponds to the
FPT we explained above and it is worthwhile for us to evalu-
ate its distribution P�t� to investigate statistical property of
the Sony Bank USD/JPY rates.

To calculate the FPT distribution P�t� for the time series
Xk, we define the probability P�1�, which means the prob-
ability of the FPT is t=1 as

P�1� = lim
T→�

1

T�
k=1

T

���Xk+1 − Xk� − �� , �1�

where ��x� means the Heviside step function, namely,
��x�=1 for x�0 and ��x�=0 for x�0. We usually solve a
kind of �fractal� Fokker-Plank equation under some appropri-
ate boundary conditions �2–4,14,18,19� or use the so-called
image method �1,20� to discuss the FPT problem. However,
as we saw in Eq. �1�, our approach is completely different
from such standard treatments. To evaluate the FPT �prob-
ability� distribution, say P�1�, we directly count the number
of t=1, namely, N1=�k=1

T ���Xk+1−Xk�−�� appearing within
quite a long time interval T. We might choose T as a time
interval during which the market is open. Then the ratio
N1 /T should be expected to converge to P�1� as T tends to
infinity. This is the meaning of Eq. �1� and is our basic idea
for evaluating the FPT distribution. From our method, to
evaluate the FPT distribution by counting Nt �t=1,2 , . . . �,
the probability P�2� is also given by limT→��N2 /T�, that is to
say,

P�2� = lim
T→�

1

T�
k=1

T

���Xk+2 − Xk� − �� − P�1�

= lim
T→�

1

T�
k=1

T

���Xk+2 − Xk� − ��

− lim
T→�

1

T�
k=1

T

���Xk+1 − Xk� − �� . �2�

In the same way as the probability P�2�, the probability P�3�
is obtained as

P�3� = lim
T→�

1

T�
k=1

T

���Xk+3 − Xk� − �� − P�1� − P�2�

= lim
T→�

1

T�
k=1

T

���Xk+3 − Xk� − ��

− lim
T→�

1

T�
k=1

T

���Xk+2 − Xk� − �� . �3�

We should notice that the probability P�1� was canceled in
expression �3�. Thus we easily generalize this kind of calcu-
lation to evaluate the distribution P�t� by repeating the above
procedure as follows.

P�t� = lim
T→�

1

T�
k=1

T

���Xk+t − Xk� − ��

− lim
T→�

1

T�
k=1

T

���Xk+t−1 − Xk� − �� , �4�

where P�1� , . . . , P�t−2� were all canceled in this final for-
mula �4�. Equation �4� is the starting point of our evaluation.
At a glance, this equation seems to be just a definition of the
FPT distribution; however, for some classes of stochastic
processes, we can derive the explicit form of the FPT distri-
bution from this simple equation. In the next section, we
derive the FPT distribution for the Wiener process as a
simple test of our method. We stress that our approach helps
as an intuitive account for the first-passage process and deri-
vation of its distribution.

Simple test of the method for Wiener stochastic processes

To show the validity and usefulness of our method, we
derive the FPT distribution from the above expression �4� for
Wiener stochastic processes �Brownian motion�. The ordi-
nary Wiener process is described by Xt+1=Xt+Yt, where the
noise term Yt obeys the white Gaussian with zero mean and
variance �2. Then we should notice that the difference St
	Xk+t−Xk is rewritten in terms of the sum of the noise terms
Yt as St=� j=0

t−1Yk+j. As is well known, as the Gaussian process
is stable, St obeys the Gaussian with zero mean and 
�St�2�
= t�2 variance. Using the same argument as St, St−1 also
obeys the Gaussian with zero mean and 
�St−1�2�= �t−1��2

variance. Therefore the FPT distribution P�t� derived by Eq.
�4� leads to

P�t� = 	�p:St,St−1� , �5�

	�p:l,m� 	 �
−�

�

p�l����l� − ��dl − �
−�

�

p�m����m� − ��dm

�6�

when we assume that the underlying stochastic process is
ergodic, namely, that time average and ensemble average
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coincide. For the ordinary Wiener process, the probability
distributions for St and St−1 are Gaussians with zero
mean and variances t�2 and �t−1��2, respectively.
Thus we easily evaluate the integral appearing in Eq. �6�
after substituting p= pG�St�= �1/2
�2t�e−St

2/2�2t and

pG�St−1�= �1/2
�2�t−1��e−St−1
2 /2�2�t−1� and obtain P�t�

=	�pG :St ,St−1� as

P�t� = 2�H� a
t
� − H� a

t − 1
�� , �7�

where we defined a	� /�. The function H�x� is defined by

H�x�	�x
�dze−z2/2 /2
. We should keep in mind that the

above result is valid for discrete time t, however, it is easy
for us to obtain its continuous time version by replacing t
→ t, t−1→ t−�t, and evaluating Eq. �7� in the limit of �t
→0. Then, we have

P�t��t = 2H� a
t
� − 2H� a

t − �t
�

= 2
�

�t
H� a

t
��t + O���t�2� . �8�

Thus the FPT distribution for the ordinary Wiener process in
the continuous time limit is given by

P�t� = 2
�

�t
H� a

t
� =

a exp�−
a2

2t
�

2
t3/2
. �9�

This well-known form is the expected inverse Gaussian dis-
tribution �21� for the FPT distribution of the ordinary Wiener
process and is often observed in the so-called interspike in-
terval �ISI� of the integrate-and-fire model for neural net-
works �3,4,22�. Therefore in the asymptotic regime t→�,
the FPT distribution for the Wiener process obeys
t−3/2-scaling law. From the above discussion, we found that
our approach based on direct counting of the FPT to obtain
the FPT distribution is effective and gives a well-known so-
lution for the ordinary Wiener process.

Before we move to the main section, we should comment
on the much shorter derivation of the above formulation �9�.
Let us define our stochastic process by x�t� and the probabil-
ity density function finding the process in x� at time t pro-
vided that it was in x at time 0 by p�x� , t �x ,0�. Here, we
assume that p�x� , t �x ,0� is symmetric with respect to x�=0.
We also define the FPT with absorbing barriers x= ±� by �.
Then, the complementary cumulative distribution of � is
given by

W�x,t� = Pr�� � t� = �
−�

�

p�x�,t�x,0�dx� �10�

and the cumulative distribution function leads to

H�x,t� = Pr�� � t� = 1 − W�x,t� = 2�
�

�

p�x�,t�x,0�dx�.

�11�

Thus the FPT distribution is obtained by

p�x,t� =
�H�x,t�

�t
. �12�

This equation coincides with Eq. �9�. We should also men-
tion that the similar derivations are found in Refs. �23,24�.

III. STABLE PROCESSES AND THEIR FPT
DISTRIBUTIONS

We stress that our method is widely applicable to stochas-
tic processes whose distributions are stable. Stable processes
are specified as follows. If stochastic variables Yi �i
=1, . . . ,N� are identically independently distributed from
p�Yi�, the Fourier transform of the sum of the Yi, namely,
Sn=� j=1

N Y j is given by

n�q� = ��q��n, �13�

where �q� is the Fourier transform of the stochastic variable
Y, namely, the characteristic function and defined by

�q� = �
−�

�

p�Y�eiqYdY . �14�

Then, the stochastic process Yi is referred to as a stable pro-
cess. Strictly speaking, Eq. �13� is a possible definition of
infinitely divisible random variables and not of stable ran-
dom variables. A stable random variable is infinitely divisible
and stability refers to the invariance of the distribution with
respect to convolutions.

It is obvious that for this class of stable processes, the
FPT distribution is easily obtained by our method because
the probability distributions p�St� and p�St−1� to evaluate
	�p :St ,St−1� in Eq. �5� are defined explicitly. In the next
sections, we show several results from our approach.

A. Lorentzian stochastic processes

As a first simple example of the stable distributions, let us
think about Lorentzian stochastic processes: Xt+1=Xt+Yt,
where the noise term Yt obeys the following white Lorentz-
ian:

p�Yt� =
�




1

�2 + Yt
2 . �15�

Then, the characteristic function of the stochastic variable Yt
is given by

�q� =
�



�

−�

� eiqYt

�2 + Yt
2dYt = e−��q�. �16�

By using the convolution of the Fourier transform for the
variable Sn=�k=1

n Yk, we have n�q�= ��q��n=e−n��q�. There-
fore the inverse Fourier transform of n�q� leads to the prob-
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ability distribution of the sum of noise term as follows:

pLorentz�Sn� =
1

2

�

−�

�

e−n��q�−iqxdq =
�n




1

��n�2 + Sn
2 . �17�

By substituting this probability pLorentz�St�, pLorentz�St−1� into
Eqs. �5� and �6�, we obtain the FPT distribution for the
Lorentzian stochastic processes as follows:

P�t� = 	�pLorentz:St,St−1�

= 2�
�

� �t




dSt

��t�2 + St
2 − 2�

�

� ��t − 1�



dSt−1

���t − 1��2 + St−1
2

=
2



tan−1� b

t − 1
� −

2



tan−1�b

t
� , �18�

where we defined b	� /�. This is a result for discrete time
steps; however, its continuous version is easily obtained by
using d�tan−1�y�� /dy= �1+y2�−1 as follows:

P�t� = −
�

�t
� 2



tan−1�b

t
�� =

2b




1

b2 + t2 , �19�

From this result, we find that the FPT distribution for the
Lorentzian stochastic processes obeys the Lorentzian. In the
asymptotic regime t→�, the FPT distribution for the Lorent-
zian stochastic processes obeys the t−2-scaling law.

B. Anomalous diffusion of Lévy flight

We next consider the case of Lévy stochastic processes
whose noise term Yt of the stochastic process Xt+1=Xt+Yt
obeys the following Lévy distribution:

pLévy�Yt� =
1



�

0

�

e−��q�� cos�qYt�dq . �20�

We should keep in mind that the above distribution �20� is
reduced to the Wiener stochastic process ��=2� and the
Lorentzian stochastic process ��=1� as its special cases. As
this process Yt �t=1, . . . ,n� is also stable, the sum of the
noise term Sn=� j=1

n Y j has the following probability distribu-
tion:

pLévy�Sn� =
1



�

0

�

e−�n�q�� cos�qSn�dq . �21�

Now, we can derive the FPT distribution by substituting
pLévy�St�, pLévy�St−1� into Eqs. �5� and �6� as

P�t� = 	�pLévy,St,St−1�

=
2



�

�

�

dS�
0

�

e−�t�q�� cos�qS�dq

−
2



�

�

�

dS�
0

�

e−��t−1��q�� cos�qS�dq . �22�

The expression of a continuous time version �22� is obtained
from the derivative of the above discrete time distribution
P�t� with respect to t as

P�t� =
�

�t� 2



�

�

�

dS�
0

�

e−�t�q�� cos�qS�dq�
= −

2�



�

�

�

dS�
0

�

�q��e−�t�q�� cos�qS�dq . �23�

In the asymptotic regime t→�, by replacing the variable as
tq�=Q and after some simple algebra, we obtain

P�t� =
2�t−��+1�/�


�
�

�

�

dS�
0

�

Q1/�e−�Q cos�
 + �Q

t
�1/�

S�dQ

= ���,��t−��+1�/�, �24�

���,�� 	
2�


�2�
l=0

�

�−�2l+1�/� �− 1�l+1�2l+1

�2l�!
��2l + 1

�
� ,

�25�

where the ��x� means gamma function and � is a constant of
order 1. Then, we should notice that the above scaling law is
consistent with both the Wiener stochastic process �P�t�
� t−3/2 for �=2� and with the Lorentzian stochastic process
�P�t�� t−2 for �=1� we discussed in the previous sections.

As we saw in the above stochastic processes, our ap-
proach based on direct counting of the FPT is widely useful
for the class of stable stochastic processes and the final ex-
pressions �5� and �6�, containing at most just two integrals.
Moreover, our approach can be applied to the FPT problems
with a surprisingly wide variety of absorbing boundary con-
ditions. This is one of the advantages of our method over
other approaches based on analysis of Fokker-Plank equa-
tions. To show the advantage, in the next section, we apply
our method to much more complicated stochastic stable pro-
cess.

C. Computer simulations

To check the theoretical prediction of the power-law ex-
ponent for the FPT distribution, we perform computer simu-
lations. Then, to generate the additive noise Yt for each time
step, the Lévy stable distribution p�Y� is needed. As shown
by Umeno �25�, the Lévy stable distribution is obtained by a
superposition of a chaotic map such as

Yn+1 = �1

2
��Yn�� −

1

�Yn����1/�

sgn�Yn −
1

Yn
� �0 � � � 2� ,

�26�

namely, for independently selected initial conditions i
=1, . . . ,N, the quantity �i=1

N Y�i� /N1/� obeys a Lévy stable law
with �, that is,

p�Y� =
1



�

0

�

e−q�
cos�qY�dq . �27�
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In Fig. 1, we plot the Lévy distribution with �=1 �Lorentz-
ian� and �=1.2 obtained by the superposition of the chaotic
map �26�. We set the number of the superposition of the
chaotic map N=10 000. From this figure, we find that the
distributions obtained by the simulations are in good agree-
ment with the corresponding analytical expressions �27�.
Keeping these results in mind, we use the sampling point
from the superposition of the chaotic map �26� as the addi-
tive noise Yt in the stochastic process for each time step.
Then, we should notice that one should choose a large value
for the width of the rate window �, say, ��100 to investigate
the tail of the FPT distribution. This is because it is a rare
event for the random walker to stay in the range �−� ,�� and
it takes quite long computational time for us to obtain the tail
exponent �relatively long FPT� if � is small. Here, we choose
�=120 and evaluate the power-law exponent of the FPT dis-
tribution for the Lévy processes with �=1 and 1.2. The re-
sults are shown in Fig. 2. From this figure, we find that the
power-law tails have almost the same exponents as those
predicted by our theory. Of course, the tail region is too
noisy to conclude that the simulations are completely consis-
tent with the theory. However, at least we may say that they
are not in disagreement. Thus the computer simulations pro-
vided us with a justification of our theoretical formulation.

IV. CROSSOVER IN SCALING LAWS OF FPT
DISTRIBUTIONS

In the previous section, we showed our formulation is
effective and much more simple than the approach of the
�fractal� Fokker-Plank equations �14� to obtain the FPT dis-
tribution for stable stochastic processes. We actually found
that the FPT distribution of the general non-Gaussian Lévy
stochastic process specified by parameter � is obtained and
its scaling behavior in the asymptotic regime t→� is
t−��+1�/�-law. In this section, we show that our formalism is
also useful in obtaining the FPT distribution for the so-called
truncated Lévy flight �the so-called KoBoL processes from
Koponen, Boyarchenko, and Levendorskii �17,26,27��, for
which it is well-known that the crossover between the Lévy
and a Gaussian regime in the distribution of the real time
step takes place �15–17,28�. In this section, we show, by
using our method based on direct counting of the FPT, this
kind of crossover in scaling laws is also observed in the
FPT t.

The characteristic function for the truncated Lévy flight is
defined by
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FIG. 1. Lévy distributions obtained by the chaotic map �26� with
�=1 �Lorentzian: upper� and �=1.2 �lower�. The broken lines are
corresponding theoretical results given by Eq. �27�. We set the num-
ber of the superposition N=10 000.
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FIG. 2. The tail exponents of the FPT distributions for �=1
�upper� and �=1.2 �lower�. The values of the power-law exponent
predicted by our theory �the slope of the broken line in each panel�
are −2 for �=1 and −1.8333 for �=1.2, respectively. We set the
width of the rate window �=120.
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T�q� = exp�− �

��2 + �q�2��/2 cos�� tan−1� �q�
�
�� − ��

cos�
�

2
� � ,

�28�

where tan−1��q� /���
 /2 as �→0 �29�. Therefore in this

limit �→0, Eq. �28� is reduced to T�q�=e−��q��. Obviously,
this is identical to the characteristic function of the conven-
tional Lévy flight as we already saw in the previous section.
For this reason, a nonzero value of � controls the cutoff
width of the truncated Lévy flight. We should notice that one
could also use a hard cutoff version of the truncation scheme
�15�, namely,

pTLF�Yt� = pLévy�Yt����−1 − �Yt�� . �29�

However, for its mathematical simplicity, we use the soft
cutoff version of the truncation scheme, which will be ex-
plained below.

By the convolution of the Fourier transform, we can show

Tn�q� = �T�q��n

= exp�− n�

��2 + �q�2��/2 cos�� tan−1� �q�
�
�� − ��

cos�
�

2
� �

�30�

and then the sum of the noise term Sn=� j=1
n Y j of the trun-

cated Lévy flight obeys the following probability distribu-
tion:

pTLF�Sn� =
1

2

�

−�

�

dqe−iqSn�T�q��n =
1



�

0

�

dq cos�qSn�

��− n�

��2 + �q�2��/2 cos�� tan−1� �q�
�
�� − ��

cos�
�

2
� � .

�31�

Substituting these probability distributions pTLF�St�,
pTLF�St−1� into Eqs. �6� and �5�, and taking the derivative of
P�t� with respect to t, we obtain the FPT distribution of the
truncated Lévy flight for the continuous time case as

P�t� = −
2�



�

�

�

dS�
0

�

dq� ��2 + �q�2��/2 cos�� tan−1� �q�
�
�� − ��

cos�
�

2
� �

� exp�− �t

��2 + �q�2��/2 cos�� tan−1� �q�
�
�� − ��

cos�
�

2
� �cos�qS� . �32�

Thus far, it has been difficult to perform the above two inte-
grals with respect to S and q analytically to obtain a compact
form of the FPT distribution. However, numerical integra-
tions of Eq. �32� enable us to proceed to it. In Fig. 3, we
show the scaling plot of the FPT distribution for the trun-
cated Lévy flight with �=1.2 for several values of �. From
these three panels in Fig. 3, we find that the scaling law of
the FPT distribution changes from t−��+1�/�= t−�1.2+1�/1.2

� t−1.83 to t−3/2 at some crossover points t��44 ��=0.5�, 19
��=1.0�, and t��8 ��=2.0�. To obtain useful information
about the crossover point t�, we evaluate the asymptotic
form of the FPT distribution �32� for both �q��� �Gaussian
regime� and �q��� �non-Gaussian Lévy regime�.

For the Gaussian regime �q���, by replacing the variable
q with Q as �t�2��−2q2 / �2 cos�
� /2��=Q, that is,

q =
2Q cos�
�

2
�

��2��−2 t1/2, �33�

we obtain

P�t� = ���,�,��t−3/2, �34�
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���,�,�� 	
2


 � ��2��−2

cos�
�

2
��

−1/2�
�

�

dS�
0

�

dQQ1/2eQ

�cos� ��2��−2

2 cos�
�

2
�Q1/2S� . �35�

It should be noted that this t−3/2 law is valid for �q���. From
Eq. �33�, this condition reads

t �

2Q cos�
�

2
�

��2�� 	 t�. �36�

On the other hand, for �q���, that is to say, for t� t�, the
FPT distribution �32� is evaluated as

P�t�� −
2�



�

�

�

dS�
0

�

dq�q��cos�
�

2
� − ��

q
���

cos�
�

2
� �

�e−��q�t cos�qS�� −
2�



�

�

�

dS�
0

�

dq�q��e−��q��t cos�qS� .

�37�

This result is identical to the FPT distribution for the con-
ventional Lévy flight, which is defined by Eqs. �24� and �25�,
and was already obtained in the previous section.

Let us summarize the result for the scaling laws of the
FPT distribution for the truncated Lévy flight.

P�t� � �t−��+1�/� �t � t�: non-Gaussian Lévy regime�
t−3/2 �t � t�: Gaussian regime� .

�
�38�

We should bear in mind that the crossover point t� obtained
by Eq. �36� contains the integral variable Q. Therefore it is
hard to say that t� is well-defined. To delete the
Q-dependence of t�, we consider the ratio of t���� and
t��2��. From Eq. �36�, we obtain t���� / t��2��=2�, namely,
t����=2�t��2��. Let us check this scaling relation for the
result we obtained in Fig. 3. For �=1.2, the relation reads
t����=21.2t��2��=2.297t��2��. This relation predicts the
crossover point t���=0.5� / t���=1.0�= t���=1.0� / t���
=2.0�=2.297, which is very close to the results obtained in
Fig. 3, namely, 44/19�2.316 and 19/8�2.375. The small
difference is probably because of impreciseness of numerical
integrations appearing in Eq. �32�.

The relation t����=2�t��2�� for successive values of �
and 2� is easily extended for the relation between � and ��
���1� as follows:

t���� = ��t����� . �39�

This scaling relation for the crossover point t� in the scaling
laws of the FPT distribution of the truncated Lévy flight t� is
one of the main results in this paper. From this result �Eq.
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FIG. 3. Scaling laws of the FPT distribution for the
truncated Lévy flight. We set �=1.2 and �=0.5 �upper panel�,
1.0 �center panel� and 2.0 �lower panel�. We find a clear
crossover between Lévy and Gaussian regimes. The scaling laws
change at the crossover point t��44 ��=0.5�, 19 ��=1.0�,
and t��8 ��=2.0�. Below the crossover point t�, the scaling
laws are those of the Lévy: t−��+1�/�= t−1.83, whereas, above
t�, the scaling laws become those of the Gaussian: t−3/2.
In these three panels, we find that the scaling relation
t���=0.5� / t���=1.0�= t���=1.0� / t���=2.0�=2��2.297 holds
for the crossover points.
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�39��, we find that the crossover point t� increases rapidly as
the effective cutoff length l	����−1 also increases as

t��l� = � l

l0
��

t��l0� , �40�

where we set l0	�−1. Therefore we conclude that the cross-
over between non-Gaussian Lévy and Gaussian regimes is
observed not only in the distribution of the real-time n flight,
which was reported by Mantegna and Stanley �15�, but also
in the FPT distribution of the truncated Lévy flight.

In the study by Mantegna and Stanley �15�, they investi-
gated the stochastic variable zn=�k=1

n xk, where xk	Xk
−Xk−1 obeys the truncated Lévy flight. They evaluated the
probability of return P�zn=0� and found that the P�zn=0�
obeys the Gaussian n−1/2-law in the large real time step n
regime. In this section, it was shown that this ultraslow con-
vergence from the Lévy regime to the Gaussian regime is
conserved even if we consider the first passage process of the
truncated Lévy flight. The relation between their results and
ours is clearly understood as follows.

For a given time interval t of the first passage process of
the truncated Lévy flight, the time series of the variable xk
=Xk0+k−Xk0+k−1 behaves as x1 ,x2 , . . . ,xt, where k0 is an ori-
gin for the measurement of the interval t. Then, from the
observation by Mantegna and Stanley, the sum zt=�k=1

t xk
=Xk0+t−Xk0

obeys a Gaussian with zero-mean and variance t
if the time interval t is large enough, that is, t� t�. Then, the
probability of return is given by P�zt=0�� t−1/2. In other
words, for t� t�, it takes quite a long time for a random
walker to escape from the region �Xk0

−� ,Xk0
+��, and the

time t for escaping guarantees that the central limit theorem
works to make the variable zt a Gaussian. As a result, the
FPT distribution P�t� should follow the corresponding
Gaussian t−3/2-law from our argument for the case of the
Wiener process �9�. On the other hand, if the interval t is
smaller than the crossover point t�, the central limit theorem
for zt does not work and zt is no longer a Gaussian. Then, as
we checked, the FPT distribution P�t� obeys t−��+1�/�-law of
the Lévy flight.

V. SUMMARY

In this paper, we proposed an approach to evaluate the
FPT distribution. Our method is based on direct counting of

the FPT. We show that our approach gives an explicit form of
the FPT distribution for stable stochastic processes. Actually,
for Wiener �Brownian motion�, Lorentzian, and Lévy sto-
chastic processes, our method was demonstrated. Thanks to
the mathematical simplicity of our method, it becomes easy
to grasp the intuitive meaning of the FPT distribution and to
tackle more complicated stochastic processes. As an ex-
ample, we discussed the FPT distribution of the truncated
Lévy flight �the KoBoL process�. We found a clear crossover
between non-Gaussian Lévy and Gaussian regimes in the
scaling laws of the FPT distribution. We found the scaling
relation on the crossover point t� with respect to the effec-
tive length l of the cutoff as t��l�= �l / l0��t��l0� with l0

=�−1.
Very recently, Koren et al. �30� investigated not only the

FPT distribution but also the first-passage leapover �FPL�
distribution under a single absorbing boundary condition. A
relatively new concept, the FPL is defined as the flight length
for a random walker to move beyond the single boundary �a
target�. Our system in this paper possesses two boundaries
�in this sense, our process might be referred to as a first exit
process�; however, it might be possible to apply our analysis
to the problem in order to discuss the FPL distribution. This
will be addressed in future work.

We hope that beyond the present analysis for the Sony
Bank rate, our approach might be widely used in many sci-
entific research fields, especially in the field of econophysics
including financial data analysis.
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